Abstract
This study presents the results of the biomass pyrolysis process focusing on biochar production and its potential energetic (as solid fuel) and material (as adsorbent) applications. Three kinds of biomass waste were investigated: wheat straw, spent coffee grounds, and brewery grains. The pyrolysis process was carried out under nitrogen atmosphere at 400 and 500 °C (residence time of 20 min). A significant increase in the carbon content was observed in the biochars, e.g., from 45% to 73% (at 400 °C) and 77% (at 500 °C) for spent coffee grounds. In addition, the structure and morphology were investigated using scanning electron microscopy. Thermal properties were studied using a simultaneous thermal analysis under an oxidising atmosphere. The chemical activation was completed using KOH. The sorption properties of the obtained biochars were tested using chromium ion (Cr3+) adsorption from liquid solution. The specific surface area and average pore diameter of each sample were determined using the BET method. Finally, it was found that selected biochars can be applied as adsorbent or a fuel. In detail, brewery grains-activated carbon had the highest surface area, wheat straw-activated carbon adsorbed the highest amount of Cr3+, and wheat straw chars presented the best combustion properties.
Funder
European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献