The Use of Exoskeletons and Molts of Farmed Mealworm (Tenebrio molitor) for the Removal of Reactive Dyes from Aqueous Solutions

Author:

Jóźwiak Tomasz1ORCID,Filipkowska Urszula1ORCID,Bakuła Tadeusz2ORCID

Affiliation:

1. Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn, Warszawska St. 117a, 10-957 Olsztyn, Poland

2. Department of Veterinary Prevention and Feed Hygiene, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13 St., 10-718 Olsztyn, Poland

Abstract

The study aim was to test the applicability of exoskeletons and molts from mealworm (Tenebrio molitor) cultures as sorbents for anionic dyes: Reactive Black 5 (RB5) and Reactive Yellow (RY84). Factors investigated included: characteristics of sorbents (FTIR, pHPZC), the influence of pH on sorption efficiency, sorption kinetics (pseudo-first, pseudo-second-order, intraparticle diffusion models), and determination of the maximum sorption capacity (Langmuir 1, Langmuir 2, Freundlich, and Dubinin–Radushkevich models). The sorption efficiency of anionic dyes on the tested sorbents was the highest at pH 2. The time needed to reach the sorption equilibrium for both dyes was 120–150 min. The sorption kinetics of the dyes were best described by the pseudo-second-order model. Maximum sorption capacity data showed the best fit to Langmuir 2 isotherm, suggesting that at least two types of sorption centers played an important role in dye sorption. Presumably, for both of the tested sorbents, the active sites in question were protonated amine (-NH3+), acetamide (NH2COCH3+), and hydroxyl groups (-OH2+) of chitin and protein. The maximum RB5 and RY84 sorption capacity of the tested sorbents was 78.70 mg/g and 60.49 mg/g, respectively, for mealworm exoskeletons, as well as 55.72 mg/g and 44.25 mg/g, respectively, for mealworm molts.

Funder

University of Warmia and Mazury in Olsztyn

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference59 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3