Aminated Covalent Organic Polymers for Anionic Dye Adsorption in Aqueous Systems

Author:

Park Jooeun1,Kim Soyeon1,Park Yuri1ORCID,Kim Tae-Hyun12ORCID,Hwang Yuhoon1ORCID

Affiliation:

1. Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea

2. Laboratory of Accelerator and Radioisotopes, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea

Abstract

Aminated covalent organic polymer (ACOP) was synthesized through a catalyst-free Schiff base reaction involving terephthalaldehyde and melamine, and the prepared ACOP was used for the adsorption of anionic dyes. The prepared ACOP possessed a high specific surface area (582.07 m2/g) with an average pore size of 88.71 Å. Its point of zero charge was determined as pH 8.26. Anionic dye molecules, methyl orange (MO) and orange G (OG), were used to evaluate the dye adsorption efficiency of the prepared ACOP, and it was found that they were adsorbed rapidly on ACOP within 1 min. The maximum adsorption capacities (qm) of the prepared ACOP for MO and OG were 351.9 and 227.9 mg/g, respectively. Furthermore, the results of dye adsorption as a function of the initial pH and presence/absence of cationic dye (methylene blue; MB) revealed that dye adsorption on ACOP proceeded through charge–charge and π–π interactions. The presence of MB along with MO and OG enhanced the dye adsorption capacity because of the synergistic effect of the positively charged quaternized nitrogen atoms in the prepared ACOP. The dye adsorption mechanism was further investigated using Fourier transform infrared (FT-IR) analysis and X-ray photoelectron spectrometry (XPS). The ACOP adsorbent prepared herein using a facile catalyst-free reaction offers rapid adsorption with a high adsorption efficiency over a wide pH range and in the presence of cationic dye. For these reasons, it can be used for environmental remediation, especially in aqueous systems.

Funder

Seoul National University of Science and Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3