Affiliation:
1. Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
2. Laboratory of Accelerator and Radioisotopes, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
Abstract
Aminated covalent organic polymer (ACOP) was synthesized through a catalyst-free Schiff base reaction involving terephthalaldehyde and melamine, and the prepared ACOP was used for the adsorption of anionic dyes. The prepared ACOP possessed a high specific surface area (582.07 m2/g) with an average pore size of 88.71 Å. Its point of zero charge was determined as pH 8.26. Anionic dye molecules, methyl orange (MO) and orange G (OG), were used to evaluate the dye adsorption efficiency of the prepared ACOP, and it was found that they were adsorbed rapidly on ACOP within 1 min. The maximum adsorption capacities (qm) of the prepared ACOP for MO and OG were 351.9 and 227.9 mg/g, respectively. Furthermore, the results of dye adsorption as a function of the initial pH and presence/absence of cationic dye (methylene blue; MB) revealed that dye adsorption on ACOP proceeded through charge–charge and π–π interactions. The presence of MB along with MO and OG enhanced the dye adsorption capacity because of the synergistic effect of the positively charged quaternized nitrogen atoms in the prepared ACOP. The dye adsorption mechanism was further investigated using Fourier transform infrared (FT-IR) analysis and X-ray photoelectron spectrometry (XPS). The ACOP adsorbent prepared herein using a facile catalyst-free reaction offers rapid adsorption with a high adsorption efficiency over a wide pH range and in the presence of cationic dye. For these reasons, it can be used for environmental remediation, especially in aqueous systems.
Funder
Seoul National University of Science and Technology
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献