Towards Autonomous Process Control—Digital Twin for CHO Cell-Based Antibody Manufacturing Using a Dynamic Metabolic Model

Author:

Helgers Heribert,Schmidt AxelORCID,Strube Jochen

Abstract

The development of new biologics is becoming more challenging due to global competition and increased requirements for process understanding and assured quality in regulatory approval. As a result, there is a need for predictive, mechanistic process models. These reduce the resources and time required in process development, generating understanding, expanding the possible operating space, and providing the basis for a digital twin for automated process control. Monoclonal antibodies are an important representative of industrially produced biologics that can be used for a wide range of applications. In this work, the validation of a mechanistic process model with respect to sensitivity, as well as accuracy and precision, is presented. For the investigated process conditions, the concentration of glycine, phenylalanine, tyrosine, and glutamine have been identified as significant influencing factors for product formation via statistical evaluation. Cell growth is, under the investigated process conditions, significantly dependent on the concentration of glucose within the investigated design space. Other significant amino acids were identified. A Monte Carlo simulation was used to simulate the cultivation run with an optimized medium resulting from the sensitivity analysis. The precision of the model was shown to have a 95% confidence interval. The model shown here includes the implementation of cell death in addition to models described in the literature.

Funder

Federal Ministry for Economic Affairs and Energy

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3