Sensors and chemometrics in downstream processing

Author:

Dürauer Astrid1ORCID,Jungbauer Alois12ORCID,Scharl Theresa3ORCID

Affiliation:

1. Institute of Bioprocessing Science and Engineering University of Natural Resources and Life Sciences Vienna Austria

2. Austrian Centre of Industrial Biotechnology Vienna Austria

3. Institute of Statistics University of Natural Resources and Life Sciences Vienna Austria

Abstract

AbstractThe biopharmaceutical industry is still running in batch mode, mostly because it is highly regulated. In the past, sensors were not readily available and in‐process control was mainly executed offline. The most important product parameters are quantity, purity, and potency, in addition to adventitious agents and bioburden. New concepts using disposable single‐use technologies and integrated bioprocessing for manufacturing will dominate the future of bioprocessing. To ensure the quality of pharmaceuticals, initiatives such as Process Analytical Technologies, Quality by Design, and Continuous Integrated Manufacturing have been established. The aim is that these initiatives, together with technology development, will pave the way for process automation and autonomous bioprocessing without any human intervention. Then, real‐time release would be realized, leading to a highly predictive and robust biomanufacturing system. The steps toward such automated and autonomous bioprocessing are reviewed in the context of monitoring and control. It is possible to integrate real‐time monitoring gradually, and it should be considered from a soft sensor perspective. This concept has already been successfully implemented in other industries and requires relatively simple model training and the use of established statistical tools, such as multivariate statistics or neural networks. This review describes a scenario for integrating soft sensors and predictive chemometrics into modern process control. This is exemplified by selective downstream processing steps, such as chromatography and membrane filtration, the most common unit operations for separation of biopharmaceuticals.

Funder

Österreichische Forschungsförderungsgesellschaft

Publisher

Wiley

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Continuous downstream processing;Separation and Purification Technology;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3