Formulation of Nucleic Acids by Encapsulation in Lipid Nanoparticles for Continuous Production of mRNA

Author:

Hengelbrock Alina1ORCID,Schmidt Axel1ORCID,Strube Jochen1

Affiliation:

1. Institute for Separation and Process Technology, Clausthal University of Technology, Leibnizstr. 15, 38678 Clausthal-Zellerfeld, Germany

Abstract

The development and optimization of lipid nanoparticle (LNP) formulations through hydrodynamic mixing is critical for ensuring the efficient and cost-effective supply of vaccines. Continuous LNP formation through microfluidic mixing can overcome manufacturing bottlenecks and enable the production of nucleic acid vaccines and therapeutics. Predictive process models developed within a QbD Biopharma 4.0 approach can ensure the quality and consistency of the manufacturing process. This study highlights the importance of continuous LNP formation through microfluidic mixing in ensuring high-quality, in-specification production. Both empty and nucleic acid-loaded LNPs are characterized, followed by a TFF/buffer exchange to obtain process parameters for the envisioned continuous SPTFF. It is shown that LNP generation by pipetting leads to a less preferable product when compared to continuous mixing due to the heterogeneity and large particle size of the resulting LNPs (86–104 nm). Particle size by continuous formation (71 nm) and the achieved encapsulation efficiency (EE) of 88% is close to the targeted parameters for Pfizer’s mRNA vaccine (66–93 nm, 88%EE). With the continuous encapsulation of nucleic acids in LNPs and the continuous production of mRNA in in vitro transcription, the basis for the holistic continuous production of mRNA is now established. We already showed that a fully autonomous process requires the incorporation of digital twins and a control strategy, with predictive process models and state-of-the-art PAT enabling real-time-release testing. This autonomous control can considerably improve productivity by about 15–20% and personnel as well as chemical reduction of about 30%. The results of this work complement this, laying the basis for fully continuous, bottleneck-free production of mRNA and other cell- and gene-therapeutic drug/vaccine candidates in a GMP- and QbD-compliant Biopharma 4.0 facilities on a flexible scale.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3