Technical Report—Applying Physics and Sensory Sciences to Spirits Nosing Vessel Design to Improve Evaluation Diagnostics and Drinking Enjoyment

Author:

Manska George

Abstract

Ethanol is the direct by-product of distillation. The vast majority of straight spirit beverages are bottled at 40%+ ABV (alcohol by volume). Aficionados, critics, spirits judges, and a significant percentage of drinkers choose to drink and evaluate spirits at bottled strength from traditional vessels. Olfactory perceptions are quickly compromised by abundant ethanol, numbing olfactory sensors and severely inhibiting aroma detection during evaluation. Traditional vessel redesigns have concentrated on minor styling changes, ignoring olfactory and physical sciences. Consumers’ continued search for value and quality and increased dependency on spirits competitions as a primary source of ratings emphasizes the need for a functional diagnostic vessel which displays and delivers aromas unobscured by ethanol olfactory numbing. The application of olfactory and physical science creates an engineered tasting vessel which eliminates severe ethanol olfactory numbing, optimizes aroma definition, and significantly improves diagnostics for those who evaluate, judge, rate, distill, and enjoy flavor nuances of spirits.

Publisher

MDPI AG

Subject

Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3