Quality Analysis of Direct Georeferencing in Aspects of Absolute Accuracy and Precision for a UAV-Based Laser Scanning System

Author:

Dreier Ansgar,Janßen Jannik,Kuhlmann Heiner,Klingbeil LasseORCID

Abstract

The use of UAV-based laser scanning systems is increasing due to the rapid development in sensor technology, especially in applications such as topographic surveys or forestry. One advantage of these multi-sensor systems is the possibility of direct georeferencing of the derived 3D point clouds in a global reference frame without additional information from Ground Control Points (GCPs). This paper addresses the quality analysis of direct georeferencing of a UAV-based laser scanning system focusing on the absolute accuracy and precision of the system. The system investigated is based on the RIEGL miniVUX-SYS and the evaluation uses the estimated point clouds compared to a reference point cloud from Terrestrial Laser Scanning (TLS) for two different study areas. The precision is estimated by multiple repetitions of the same measurement and the use of artificial objects, such as targets and tables, resulting in a standard deviation of <1.2 cm for the horizontal and vertical directions. The absolute accuracy is determined using a point-based evaluation, which results in the RMSE being <2 cm for the horizontal direction and <4 cm for the vertical direction, compared to the TLS reference. The results are consistent for the two different study areas with similar evaluation approaches but different flight planning and processing. In addition, the influence of different Global Navigation Satellite System (GNSS) master stations is investigated and no significant difference was found between Virtual Reference Stations (VRS) and a dedicated master station. Furthermore, to control the orientation of the point cloud, a parameter-based analysis using planes in object space was performed, which showed a good agreement with the reference within the noise level of the point cloud. The calculated quality parameters are all smaller than the manufacturer’s specifications and can be transferred to other multi-sensor systems.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3