Empirical uncertainty evaluation for the pose of a kinematic LiDAR-based multi-sensor system

Author:

Ernst Dominik1ORCID,Vogel Sören1,Neumann Ingo1,Alkhatib Hamza1

Affiliation:

1. 26555 Geodetic Institute, Leibniz University Hannover , Hannover , Germany

Abstract

Abstract Kinematic multi-sensor systems (MSS) describe their movements through six-degree-of-freedom trajectories, which are often evaluated primarily for accuracy. However, understanding their self-reported uncertainty is crucial, especially when operating in diverse environments like urban, industrial, or natural settings. This is important, so the following algorithms can provide correct and safe decisions, i.e. for autonomous driving. In the context of localization, light detection and ranging sensors (LiDARs) are widely applied for tasks such as generating, updating, and integrating information from maps supporting other sensors to estimate trajectories. However, popular low-cost LiDARs deviate from other geodetic sensors in their uncertainty modeling. This paper therefore demonstrates the uncertainty evaluation of a LiDAR-based MSS localizing itself using an inertial measurement unit (IMU) and matching LiDAR observations to a known map. The necessary steps for accomplishing the sensor data fusion in a novel Error State Kalman filter (ESKF) will be presented considering the influences of the sensor uncertainties and their combination. The results provide new insights into the impact of random and systematic deviations resulting from parameters and their uncertainties established in prior calibrations. The evaluation is done using the Mahalanobis distance to consider the deviations of the trajectory from the ground truth weighted by the self-reported uncertainty, and to evaluate the consistency in hypothesis testing. The evaluation is performed using a real data set obtained from an MSS consisting of a tactical grade IMU and a Velodyne Puck in combination with reference data by a Laser Tracker in a laboratory environment. The data set consists of measurements for calibrations and multiple kinematic experiments. In the first step, the data set is simulated based on the Laser Tracker measurements to provide a baseline for the results under assumed perfect corrections. In comparison, the results using a more realistic simulated data set and the real IMU and LiDAR measurements provide deviations about a factor of five higher leading to an inconsistent estimation. The results offer insights into the open challenges related to the assumptions for integrating low-cost LiDARs in MSSs.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Uncertainty and quality of multi-sensor systems;Journal of Applied Geodesy;2024-08-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3