Higher Dimensional Static and Spherically Symmetric Solutions in Extended Gauss–Bonnet Gravity

Author:

Bajardi Francesco,Dialektopoulos Konstantinos F.,Capozziello Salvatore

Abstract

We study a theory of gravity of the form f ( G ) where G is the Gauss–Bonnet topological invariant without considering the standard Einstein–Hilbert term as common in the literature, in arbitrary ( d + 1 ) dimensions. The approach is motivated by the fact that, in particular conditions, the Ricci curvature scalar can be easily recovered and then a pure f ( G ) gravity can be considered a further generalization of General Relativity like f ( R ) gravity. Searching for Noether symmetries, we specify the functional forms invariant under point transformations in a static and spherically symmetric spacetime and, with the help of these symmetries, we find exact solutions showing that Gauss–Bonnet gravity is significant without assuming the Ricci scalar in the action.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference55 articles.

1. Six Puzzles for LCDM Cosmology;Perivolaropoulos;arXiv,2008

2. Beyond ΛCDM: Problems, solutions, and the road ahead

3. Black holes, gravitational waves and fundamental physics: a roadmap

4. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity;Weinberg,1972

5. Extended Theories of Gravity

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Structural properties of compact stars in extended Teleparallel gravity;International Journal of Geometric Methods in Modern Physics;2024-04-22

2. New insights from GW170817 in the dynamical system analysis of Einstein Gauss–Bonnet gravity;Physics of the Dark Universe;2023-12

3. Corrections to general relativity with higher-order invariants and cosmological applications;International Journal of Geometric Methods in Modern Physics;2023-11-16

4. Charged spherically symmetric black holes in scalar-tensor Gauss–Bonnet gravity;Classical and Quantum Gravity;2023-09-27

5. The Gauss–Bonnet topological scalar in the geometric trinity of gravity;International Journal of Geometric Methods in Modern Physics;2023-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3