Corrections to general relativity with higher-order invariants and cosmological applications

Author:

Bajardi Francesco12ORCID,D’Agostino Rocco12ORCID

Affiliation:

1. Scuola Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy

2. Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli, Via Cinthia 21, 80126 Napoli, Italy

Abstract

In this paper, we review the main features of modified theories of gravity containing higher-order curvature invariants in the action. After summarizing the main features of these theories, we consider their applications to cosmology, pointing out the differences with respect to general relativity that can eventually solve issues exhibited by the latter at low and high energy scales. Specifically, we explore a gravitational action that incorporates both the Ricci scalar [Formula: see text] and the topological Gauss–Bonnet term, denoted as [Formula: see text]. Our investigation revolves around the cosmological properties of a specific category of modified gravity theories, chosen upon symmetry considerations. Within the framework of a spatially flat, homogeneous and isotropic cosmic background, we demonstrate that it is possible to account for the presently observed acceleration of the Universe by means of the extra geometric terms carried by the selected [Formula: see text] model. This approach offers a way to address the issues associated with the cosmological constant. To achieve this, we first examine the energy conditions and find that, under certain choices for the values of the cosmographic parameters, these conditions are all violated. In the second part of the work, to assess the feasibility of the selected [Formula: see text] model, we place observational constraints on its free parameters through a Bayesian Monte Carlo technique applied to late-time cosmic data. Our findings reveal that the [Formula: see text] model can effectively reproduce observations at low redshifts, providing an alternative to the standard [Formula: see text]CDM scenario.

Funder

COST Action

Publisher

World Scientific Pub Co Pte Ltd

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3