Charged spherically symmetric black holes in scalar-tensor Gauss–Bonnet gravity

Author:

Capozziello SalvatoreORCID,Nashed Gamal G L

Abstract

Abstract We derive a novel class of four-dimensional black hole (BH) solutions in Gauss–Bonnet (GB) gravity coupled with a scalar field in presence of Maxwell electrodynamics. In order to derive such solutions, we assume the ansatz g t t g r r 1 for metric potentials. Due to the choice of the ansatz of the metric, the Reissner Nordström gauge potential cannot be recovered because of the presence of higher-order terms which are not allowed to be vanishing. Moreover, the scalar field is not allowed to vanish. If it vanishes, a function of the solution results undefined. Furthermore, it is possible to show that the electric field is of higher-order in the monopole expansion: this fact explicitly comes from the contribution of the scalar field. Therefore, we can conclude that the GB scalar field acts as non-linear electrodynamics creating monopoles, quadrupoles, etc in the metric potentials. We compute the invariants associated with the BHs and show that, when compared to Schwarzschild or Reissner–Nordström space-times, they have a soft singularity. Also, it is possible to demonstrate that these BHs give rise to three horizons in AdS space-time and two horizons in dS space-time. Finally, thermodynamic quantities can be derived and we show that the solution can be stable or unstable depending on a critical value of the temperature.

Funder

COST

Istituto Nazionale di Fisica Nucleare, Sezione di Napoli

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3