The Mechanical Properties of Poly (Urea-Formaldehyde) Incorporated with Nano-SiO2 by Molecular Dynamics Simulation

Author:

Zhang Yanfang,Wang Youyuan,Li YudongORCID,Zhang Zhanxi

Abstract

Self-healing materials can promote the sustainable reuse of resources. Poly (urea-formaldehyde) (PUF) microcapsules can be incorporated into dielectric materials for self-healing. However, the mechanical properties of PUF microcapsules need to be improved due to insufficient hardness. In this paper, PUF models incorporated with nano-SiO2 of different filler concentrations (0, 2.6, 3.7, 5.3, 6.7, 7.9 wt.%) were designed. The density, the fractional free volume, and the mechanical properties of the PUF-SiO2 models were analyzed at an atomic level based on molecular dynamics simulation. The interfacial interaction model of PUF on the SiO2 surface was also constructed to further investigate the interaction mechanisms. The results showed that the incorporation of nano-SiO2 had a significant effect on the mechanical properties of PUF. Density increased, fractional free volume decreased, and mechanical properties of the PUF materials were gradually enhanced with the increase of nano-SiO2 concentration. This trend was also confirmed by experimental tests. By analyzing the internal mechanism of the PUF–SiO2 interfacial interaction, it was found that hydrogen bonds play a major role in the interaction between PUF and nano-SiO2. Moreover, hydrogen bonds can be formed between the polar atoms of the PUF chain and the hydroxyl groups (–OH) as well as O atoms on the surface of SiO2. Hydrogen bonds interactions are involved in adsorption of PUF chains on the SiO2 surface, reducing the distance between PUF chains and making the system denser, thus enhancing the mechanical properties of PUF materials.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3