The Incorporation of Graphene Nanoplatelets in Tung Oil–Urea Formaldehyde Microcapsules: A Paradigm Shift in Physicochemical Enhancement

Author:

Mustapha Abdullah Naseer1ORCID,AlMheiri Maitha1,AlShehhi Nujood1,Rajput Nitul1ORCID,Matouk Zineb1ORCID,Tomić Nataša1ORCID

Affiliation:

1. Advanced Materials Research Centre (AMRC), Technology Innovation Institute (TII), Masdar City, Abu Dhabi P.O. Box 9639, United Arab Emirates

Abstract

Tung oil (TO) microcapsules (MCs) with a poly(urea-formaldehyde) (PUF) shell were synthesized via one-step in situ polymerization, with the addition of graphene nanoplatelets (GNPs) (1–5 wt. %). The synergistic effects of emulsifiers between gelatin (gel) and Tween 80 were observed, with gel chosen to formulate the MCs due to its enhanced droplet stability. SEM images then displayed an increased shell roughness of the TO-GNP MCs in comparison to the pure TO MCs due to the GNP species on the shell. At the same time, high-resolution transmission electron microscopy (TEM) images also confirmed the presence of GNPs on the outer layer of the MCs, with the stacked graphene layers composed of 5–7 layers with an interlayer distance of ~0.37 nm. Cross-sectional TEM imaging of the MCs also confirmed the successful encapsulation of the GNPs in the core of the MCs. Micromanipulation measurements displayed that the 5% GNPs increased the toughness by 71% compared to the pure TO MCs, due to the reduction in the fractional free volume of the core material. When the MCs were dispersed in an epoxy coating and applied on a metallic substrate, excellent healing capacities of up to 93% were observed for the 5% GNP samples, and 87% for the pure TO MC coatings. The coatings also exhibited excellent corrosion resistance for all samples up to 7 days, with the GNP samples offering a more strenuous path for the corrosive agents.

Funder

Technology Innovation Institute

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3