The Influence of Deformation under Tension on Some Mechanical and Tribological Properties of High-Density Polyethylene

Author:

Kujawa MaciejORCID,Kowalewski PiotrORCID,Wieleba WojciechORCID

Abstract

Polymer materials are increasingly being used for sliding machine elements due to their numerous advantages. They are used even where they are deformed and in such a state that they interact frictionally, e.g., in machine hydraulics or lip seals. Few publications deal with the influence of deformation, which is the effect of, e.g., assembly on tribological properties of polymeric material. This deformation can reach up to ε ≈ 20% and is achieved without increasing the temperature of the polymer material. The paper presents the results of investigations in which high-density polyethylene (PE-HD) was maintained in deformation by means of a special grip (holder). The wear of the sample was significantly higher than that of the undeformed sample. This effect persisted even after partial relaxation of the stress in the sample after 24 h. Additional investigations were carried out to explain the obtained results. There were the microscopic observations of the surface after friction, measurements of microhardness, and surface free energy. Changes in the value of surface free energy and a significant decrease in microhardness with deformation under tension were observed. Deformed materials have a different surface appearance after friction and a different size and form of wear products. It was indicated that it is probable that the cohesion of the material will decrease and that the character of the wear process will change as a result of tension. Deformation under tension without heating of polymeric material (PE-HD), e.g., as a result of assembly, has been qualified as a threat to be taken into account when designing and analysing polymeric sliding elements.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3