Analysis of friction and wear processes in an innovative spine stabilization system. Part 1. A study of static and kinetic friction of a metal rod-polymer cord friction joint

Author:

Brończyk Anna

Abstract

Purpose: This analysis is the first part of research that aims to develop a model of the tribological wear of PE-UHMW cord – biometal rod combination. This type of sliding joint is applied in spine stabilization systems that enable the treatment of early-onset idiopathic scoliosis. Methods: The friction tests included force measurements, followed by the determination of static and kinetic friction coefficients as a function of the number of the performed movement cycles, and static friction coefficient with regards to the string tension force FN in the range of 50–300 N. Additionally, the surface roughness and microscopic observations of the metal rods were made. The friction measurements were carried out at a stabilized temperature T = 38 °C in the presence of distilled water and acidic sodium lactate. Results: The measurements confirmed the impact of both the number of completed movement cycles and the value of the force loaded on the cord on the static friction coefficient. Similar values of kinetic friction force occur for the pairs with the titanium alloys rods, as well as for the pairs with the steel and CoCr rod. The type of lubricant affected the obtained measurement results unevenly: (Ti6Al4V and Ti6Al7Nb – slight impact, steel 316L and CoCrMo – large impact). During microscopic observations, numerous wear products, were visible, including harder than the base material large conglomerates. Conclusions: Susceptibility of polymer fibres results in its increased resistance to wear, but it can be also combined with an increase in wear of the surface of the metal rod.

Publisher

Politechnika Wroclawska Oficyna Wydawnicza

Subject

Biomedical Engineering,Biomaterials,Bioengineering,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3