Mechanism of Mepiquat Chloride Regulating Soybean Response to Drought Stress Revealed by Proteomics

Author:

Dong Shoukun1,Wang Xin1,Li Xiaomei2,Tian Yumei1,Zhou Xinyu1,Qu Zhipeng1ORCID,Wang Xiyue1ORCID,Liu Lijun1

Affiliation:

1. Agricultural College, Northeast Agricultural University, Harbin 150030, China

2. Heilongjiang Agricultural Engineering Vocational College, Harbin 150088, China

Abstract

Soybeans are the main sources of oil and protein for most of the global population. As the population grows, so does the demand for soybeans. However, drought is a major factor that limits soybean production. Regulating soybean response to drought stress using mepiquat chloride (MC) is a feasible method; however, its mechanism is still unclear. This study used PEG-6000 to simulate drought stress and quantitative proteomic techniques to reveal changes in Heinong44 (HN44) and Heinong65 (HN65) subjected to drought following the application of 100 mg/L of MC. The results showed that SOD in HN44 did not change significantly but decreased by 22.61% in HN65 after MC pretreatment, and MDA content decreased by 22.75% and 21.54% in HN44 and HN65, respectively. Furthermore, MC improved the GSH–ASA cycle and simultaneously promoted the Calvin cycle process to enable the plant to maintain a certain carbon assimilation rate under osmotic stress. In addition, MC upregulated some proteins during gluconeogenesis and starch metabolism and increased soluble sugar content by 8.41% in HN44. MC also reduced ribosomal protein abundance, affecting translation and amino acid metabolism. In summary, MC improved GSH–ASA cycle and Calvin cycle under stress to alleviate oxidative damage and maintain crop growth. Our study is the first to report the mechanism of MC regulation in soybean under osmotic stress, providing new insights for the rational application of MC in soybean.

Funder

national key research and development program

Natural Science Foundation of Heilongjiang Province

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3