Investigation of Acid Tolerance Mechanism of Acetobacter pasteurianus under Different Concentrations of Substrate Acetic Acid Based on 4D Label-Free Proteomic Analysis

Author:

Li Tian1,Wang Xinwei1,Li Chunyan1,Fu Qingquan1,Shi Xuewei1ORCID,Wang Bin1ORCID

Affiliation:

1. Food College, Shihezi University, Shihezi 832000, China

Abstract

Acetobacter pasteurianus is always used to brew vinegar because of its ability of producing and tolerating a high concentration of acetic acid. During vinegar fermentation, initial acetic acid contributes to acetic acid accumulation, which varies with initial concentrations. In this study, to investigate the mechanisms of tolerating and producing acetic acid of Acetobacter pasteurianus under different concentrations of substrate acetic acid, four-dimensional label-free proteomic technology has been used to analyze the protein profiles of Acetobacter pasteurianus at different growth stages (the lag and exponential phases) and different substrate acetic acid concentrations (0%, 3%, and 6%). A total of 2093 proteins were quantified in this study. The differentially expressed proteins were majorly involved in gene ontology terms of metabolic processes, cellular metabolic processes, and substance binding. Under acetic acid stress, strains might attenuate the toxicity of acetic acid by intensifying fatty acid metabolism, weakening the tricarboxylic acid cycle, glycerophospholipid and energy metabolism during the lag phase, while strains might promote the assimilation of acetic acid and inter-conversion of substances during the exponential phase by enhancing the tricarboxylic acid cycle, glycolysis, pyruvate, and energy metabolism to produce and tolerate acid. Besides, cell cycle regulation and protein translation might be potential acid tolerance pathways under high acid stress. The result contributes to the exploration of new potential acid tolerance mechanisms in Acetobacter pasteurianus from four-dimensional label-free relative quantitative proteomics analysis.

Funder

National Natural Science Foundation of China

Science and Technology Innovation Special Project of the Seventh Division—Shihezi University

Science and Technology Research Project of the Seventh Division

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3