Characterization and Coexpression Analysis of the TIFY Family Genes in Euryale ferox Related to Leaf Development

Author:

Xu Lanruoyan1,Liu Ailian1,Wang Tianyu1,Wang Yuhao1,Li Liangjun1,Wu Peng1

Affiliation:

1. College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225000, China

Abstract

TIFYs are plant-specific transcription factors that contain the TIFY structural domain and play an important role in plant leaf growth and development. However, the role played by TIFY in E. ferox (Euryale ferox Salisb.) leaf development has not been investigated. In this study, 23 TIFY genes were identified in E. ferox. Phylogenetic analyses of the TIFY genes showed clustering into three groups (JAZ, ZIM, and PPD). The TIFY domain was shown to be conserved. JAZ was mainly expanded via wholegenome triplication (WGT) in E. ferox. Based on analyses of the TIFY genes in nine species, we found that JAZ has a closer relationship with PPD, in addition to appearing the most recently and expanding most rapidly, leading to the rapid expansion of TIFYs in Nymphaeaceae. In addition, their different evolution types were discovered. Different gene expressions showed the distinct and corresponsive expression patterns of the EfTIFYs in different stages of tissue and leaf development. Finally, The qPCR analysis revealed that the expression of EfTIFY7.2 and EfTIFY10.1 showed an upward trend and high expression throughout leaf development. Further co-expression analysis indicated that EfTIFY7.2 might be more important for the development of E. ferox leaves. This information will be valuable when exploring the molecular mechanisms of EfTIFYs in plants.

Funder

China Postdoctoral Science Foundation

China Agriculture Research System

Jiangsu seed industry revitalization‘Jie Bang Gua Shuai’project

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3