Author:
He Xin,Kang Yu,Li Wenqian,Liu Wei,Xie Pan,Liao Li,Huang Luyao,Yao Min,Qian Lunwen,Liu Zhongsong,Guan Chunyun,Guan Mei,Hua Wei
Abstract
Abstract
Background
TIFY is a plant-specific protein family with a diversity of functions in plant development and responses to stress and hormones, which contains JASMONATE ZIM-domain (JAZ), TIFY, PPD and ZML subfamilies. Despite extensive studies of TIFY family in many other species, TIFY has not yet been characterized in Brassica napus.
Results
In this study, we identified 77, 36 and 39 TIFY family genes in the genome of B. napus, B. rapa and B. oleracea, respectively. Results of the phylogenetic analysis indicated the 170 TIFY proteins from Arabidopsis, B. napus, B. rapa and B. oleracea could be divided into 11 groups: seven JAZ groups, one PPD group, one TIFY group, and two ZIM/ZML groups. The molecular evolutionary analysis showed that TIFY genes were conserved in Brassicaceae species. Gene expression profiling and qRT-PCR revealed that different groups of BnaTIFY members have distinct spatiotemporal expression patterns in normal conditions or following treatment with different abiotic/biotic stresses and hormones. The BnaJAZ subfamily genes were predominantly expressed in roots and up-regulated by NaCl, PEG, freezing, methyl jasmonate (MeJA), salicylic acid (SA) and Sclerotinia sclerotiorum in leaves, suggesting that they have a vital role in hormone signaling to regulate multiple stress tolerance in B. napus.
Conclusions
The extensive annotation and expression analysis of the BnaTIFY genes contributes to our understanding of the functions of these genes in multiple stress responses and phytohormone crosstalk in B. napus.
Funder
Institutions of Higher Learning Innovation Ability Enhancement
National High-tech Research and Development Program
Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province
Publisher
Springer Science and Business Media LLC
Reference61 articles.
1. Kazan K. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci. 2015;20(4):219–29.
2. Verma V, Ravindran P, Kumar PP. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016;16:86.
3. Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Kumar V, Verma R, Upadhyay RG, Pandey M, et al. Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci. 2017;8:161.
4. Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. Ann Bot. 2013;111(6):1021–58.
5. Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol. 2006;9(4):436–42.
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献