Melatonin Reverses High-Temperature-Stress-Inhibited Photosynthesis in the Presence of Excess Sulfur by Modulating Ethylene Sensitivity in Mustard

Author:

Iqbal Noushina1ORCID,Sehar Zebus2ORCID,Fatma Mehar2ORCID,Khan Sheen2,Alvi Ameena Fatima2,Mir Iqbal R.2ORCID,Masood Asim2ORCID,Khan Nafees A.2ORCID

Affiliation:

1. Department of Botany, Jamia Hamdard, New Delhi 110062, India

2. Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India

Abstract

Melatonin is a pleiotropic, nontoxic, regulatory biomolecule with various functions in abiotic stress tolerance. It reverses the adverse effect of heat stress on photosynthesis in plants and helps with sulfur (S) assimilation. Our research objective aimed to find the influence of melatonin, along with excess sulfur (2 mM SO42−), in reversing heat stress’s impacts on the photosynthetic ability of the mustard (Brassica juncea L.) cultivar SS2, a cultivar with low ATP-sulfurylase activity and a low sulfate transport index (STI). Further, we aimed to substantiate that the effect was a result of ethylene modulation. Melatonin in the presence of excess-S (S) increased S-assimilation and the STI by increasing the ATP-sulfurylase (ATP-S) and serine acetyltransferase (SAT) activity of SS2, and it enhanced the content of cysteine (Cys) and methionine (Met). Under heat stress, melatonin increased S-assimilation and diverted Cys towards the synthesis of more reduced glutathione (GSH), utilizing excess-S at the expense of less methionine and ethylene and resulting in plants’ reduced sensitivity to stress ethylene. The treatment with melatonin plus excess-S increased antioxidant enzyme activity, photosynthetic-S use efficiency (p-SUE), Rubisco activity, photosynthesis, and growth under heat stress. Further, plants receiving melatonin and excess-S in the presence of norbornadiene (NBD; an ethylene action inhibitor) under heat stress showed an inhibited STI and lower photosynthesis and growth. This suggested that ethylene was involved in the melatonin-mediated heat stress reversal effects on photosynthesis in plants. The interaction mechanism between melatonin and ethylene is still elusive. This study provides avenues to explore the melatonin–ethylene-S interaction for heat stress tolerance in plants.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3