Ethylene Is Crucial in Abscisic Acid-Mediated Modulation of Seed Vigor, Growth, and Photosynthesis of Salt-Treated Mustard

Author:

Masood Asim1ORCID,Khan Sheen1,Mir Iqbal R.1ORCID,Anjum Naser A.1ORCID,Rasheed Faisal1,Al-Hashimi Abdulrahman2ORCID,Khan Nafees A.1ORCID

Affiliation:

1. Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India

2. Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

The current study explored the differential interaction between ethylene (ET) and abscisic acid (ABA) in relation to salt stress in mustard (Brassica juncea L.) plants. Significant reductions in seed germination, growth, and photosynthesis were observed with 100 mmol NaCl. Among the cultivars tested, the Pusa Vijay cultivar was noted as ET-sensitive. Pusa Vijay responded maximally to an application of 2.0 mmol ethephon (Eth; 2-chloethyl phosphonic acid-ethylene source), and exhibited the greatest growth, photosynthesis, activity of 1-aminocyclopropane carboxylic acid (ACC) synthase (ACS), and ET evolution. Notably, Eth (2.0 mmol) more significantly improved the seed germination percentage, germination and vigor index, amylase activity, and reduced H2O2 content under salt stress, while ABA (25 µmol) had negative effects. Moreover, the individual application of Eth and ABA on Pusa Vijay under both optimal and salt-stressed conditions increased the growth and photosynthetic attributes, nitrogen (N) and sulfur (S) assimilation, and antioxidant defense machinery. The addition of aminoethoxyvinylglycine (0.01 µmol AVG, ET biosynthesis inhibitor) to ABA + NaCl-treated plants further added to the effects of ABA on parameters related to seed germination and resulted in less effectiveness of growth and photosynthesis. In contrast, the effects of Eth were seen with the addition of fluoridone (25 µmol Flu, ABA biosynthesis inhibitor) to Eth + NaCl. Thus, it can be suggested that ET is crucial for alleviating salt-induced inhibition in seed germination, growth, and photosynthesis, while ABA collaborated with ET to offer protection by regulating nutrient assimilation and enhancing antioxidant metabolism. These findings provide insight into the complex regulatory processes involved in ET–ABA interaction, enhancing our understanding of plant growth and development and the mitigation of salt stress in mustard. It opens pathways for developing hormonal-based strategies to improve crop productivity and resilience, ultimately benefiting agricultural practices amidst a challenging environment.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3