Genome-Wide Analysis of ZAT Gene Family in Osmanthus fragrans and the Function Exploration of OfZAT35 in Cold Stress

Author:

Ding Huifen12,Yang Zhandong12,Zai Zhouying12,Feng Keyi12,Wang Lianggui12ORCID,Yue Yuanzheng12,Yang Xiulian12

Affiliation:

1. Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China

2. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

Abstract

Osmanthus fragrans is a popular ornamental and odorant plant with high commercial value, but its cultivation and exploitation are limited by low temperature. The ZAT (zinc finger of Arabidopsis thaliana) genes as a subclass of the C2H2-type zinc finger proteins (C2H2-ZFP) family play essential roles in various abiotic stresses. However, their roles in cold stress response in O. fragrans remain unclear. This study identified 38 OfZATs, which could be divided into 5 subgroups based on the phylogenetic tree, with OfZATs in the same subgroup harboring similar gene structures and motif patterns. In addition, 49 segmental and 5 tandem duplication events were detected among OfZAT genes, while some OfZAT genes exhibited specific expression patterns in different tissues. Furthermore, two OfZATs were induced in salt stress and eight OfZATs responded to cold stress. Interestingly, OfZAT35 showed a continuously increasing expression trend under cold stress, while its protein showed nucleus localization with no transcriptional activation activity. Transiently transformed tobacco overexpressing OfZAT35 exhibited a significantly higher relative electrolyte leakage (REL) level and increased activities of superoxide dismutase (SOD), peroxidase (POD), and Ascorbate peroxidase (APX), while there was significantly decreased activity of catalase (CAT). Moreover, CAT, DREB3, and LEA5, which are associated with cold stress, were dramatically decreased after cold treatment in transiently transformed tobacco, suggesting that overexpression of OfZAT35 negatively regulated cold stress. This study provides a basis for exploring the roles of ZAT genes and contributes to uncovering the mechanism of ZAT-mediated cold stress response in O. fragrans.

Funder

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3