Integrated Analysis of miRNAome and Transcriptome Identify Regulators of Elm Seed Aging

Author:

Ye Tiantian1,Huang Xu1,Ma Tianxiao1,Li Ying1,Wang Xiaofeng1,Lu Hai1ORCID,Xue Hua1ORCID

Affiliation:

1. State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, China

Abstract

After maturity, seed vigor irreversibly decreases. Understanding the underlying mechanism is important to germplasm preservation. MicroRNAs (miRNAs) play vital regulatory roles in plants. However, little is known about how miRNAs regulate seed aging. Here, elm (Ulmus pumila L.) seeds of three aging stages were subjected to a multi-omics analysis including transcriptome, small RNAome and degradome, to find regulators of seed aging. In the small RNAome, 119 miRNAs were identified, including 111 conservative miRNAs and eight novel miRNAs specific to elm seeds, named upu-miRn1-8. A total of 4900 differentially expressed genes, 22 differentially expressed miRNAs, and 528 miRNA-target pairs were identified during seed ageing. The target genes were mainly involved in the processing of proteins in the endoplasmic reticulum, metabolism, plant hormone signal transduction, and spliceosome. The expression of several DEGs and miRNAs were verified by qRT-PCR. The degradome data showed the exact degradation sites of upu-miR399a on ABCG25, and upu-miR414a on GIF1, etc. The dual-luciferase assay verified the negative regulation of upu-miR399a on ABCG25 and upu-miR414a on GIF1 in tobacco leaves. This study outlined the regulation network of mRNA, miRNA and miRNA-target genes during seed aging, which is helpful in integrating the regulation mechanisms of seed vigor at the transcriptional and post-transcriptional levels.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3