Transcriptomic Profiling of Two Rice Thermo-Sensitive Genic Male Sterile Lines with Contrasting Seed Storability after Artificial Accelerated Aging Treatment

Author:

Li Fan12,Ye Hongbing12,Wang Yingfeng12ORCID,Zhou Jieqiang12,Zhang Guilian12,Liu Xiong12,Lu Xuedan12ORCID,Wang Feng12,Chen Qiuhong12,Chen Guihua12,Xiao Yunhua12ORCID,Tang Wenbang123,Deng Huabing12

Affiliation:

1. College of Agronomy, Hunan Agricultural University, Changsha 410128, China

2. Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410128, China

3. State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410128, China

Abstract

Seed storability has a significant impact on seed vitality and is a crucial genetic factor in maintaining seed value during storage. In this study, RNA sequencing was used to analyze the seed transcriptomes of two rice thermo-sensitive genic male sterile (TGMS) lines, S1146S (storage-tolerant) and SD26S (storage-susceptible), with 0 and 7 days of artificial accelerated aging treatment. In total, 2658 and 1523 differentially expressed genes (DEGs) were identified in S1146S and SD26S, respectively. Among these DEGs, 729 (G1) exhibited similar regulation patterns in both lines, while 1924 DEGs (G2) were specific to S1146S, 789 DEGs (G3) were specific to SD26S, and 5 DEGs (G4) were specific to contrary differential expression levels. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that “translation”, “ribosome”, “oxidative phosphorylation”, “ATP-dependent activity”, “intracellular protein transport”, and “regulation of DNA-templated transcription” were significantly enriched during seed aging. Several genes, like Os01g0971400, Os01g0937200, Os03g0276500, Os05g0328632, and Os07g0214300, associated with seed storability were identified in G4. Core genes Os03g0100100 (OsPMEI12), Os03g0320900 (V2), Os02g0494000, Os02g0152800, and Os03g0710500 (OsBiP2) were identified in protein–protein interaction (PPI) networks. Seed vitality genes, MKKK62 (Os01g0699600), OsFbx352 (Os10g0127900), FSE6 (Os05g0540000), and RAmy3E (Os08g0473600), related to seed storability were identified. Overall, these results provide novel perspectives for studying the molecular response and related genes of different-storability rice TGMS lines under artificial aging conditions. They also provide new ideas for studying the storability of hybrid rice.

Funder

National Natural Science Foundation of China

Science and Technology Innovation Program of Hunan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3