Analysis of Net Primary Productivity Variation and Quantitative Assessment of Driving Forces—A Case Study of the Yangtze River Basin

Author:

Liu Chenxi1ORCID,Shi Shuo123,Wang Tong2ORCID,Gong Wei1234,Xu Lu2,Shi Zixi2,Du Jie2,Qu Fangfang2

Affiliation:

1. Electronic Information School, Wuhan University, Wuhan 430072, China

2. State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing, Wuhan 430079, China

3. Perception and Effectiveness Assessment for Carbon-Neutrality Efforts, Engineering Research Center of Ministry of Education, Wuhan 430079, China

4. Wuhan Institute of Quantum Technology, Wuhan 430206, China

Abstract

Net primary productivity (NPP) can indirectly reflect vegetation’s capacity for CO2 fixation, but its spatiotemporal dynamics are subject to alterations to some extent due to the influences of climate change and human activities. In this study, NPP is used as an indicator to investigate vegetarian carbon ability changes in the vital ecosystems of the Yangtze River Basin (YRB) in China. We also explored the NPP responses to climate change and human activities. We conducted a comprehensive analysis of the temporal dynamics and spatial variations in NPP within the YRB ecosystems from 2003 to 2020. Furthermore, we employed residual analysis to quantitatively assess the contributions of climate factors and human activities to NPP changes. The research findings are as follows: (1) Over the 18-year period, the average NPP within the basin amounted to 543.95 gC/m2, displaying a noticeable fluctuating upward trend with a growth rate of approximately 3.1 gC/m2; (2) The areas exhibiting an increasing trend in NPP account for 82.55% of the total study area. Regions with relatively high stability in the basin covered 62.36% of the total area, while areas with low stability accounted for 2.22%, mainly situated in the Hengduan Mountains of the western Sichuan Plateau; (3) NPP improvement was jointly driven by human activities and climate change, with human activities contributing more significantly to NPP growth. Specifically, the contributions were 65.39% in total, with human activities contributing 59.28% and climate change contributing 40.01%. This study provides an objective assessment of the contributions of human activities and climate change to vegetation productivity, offering crucial insights for future ecosystem development and environmental planning.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Wuhan University Specific Fund for Major School-level Internationalization Initiatives

LIESMARS Special Research Funding

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3