Abstract
AbstractExcessive emissions of greenhouse gases — of which carbon dioxide is the most significant component, are regarded as the primary reason for increased concentration of atmospheric carbon dioxide and global warming. Terrestrial vegetation sequesters 112–169 PgC (1PgC = 1015g carbon) each year, which plays a vital role in global carbon recycling. Vegetation carbon sequestration varies under different land management practices. Here we propose an integrated method to assess how much more carbon can be sequestered by vegetation if optimal land management practices get implemented. The proposed method combines remotely sensed time-series of net primary productivity datasets, segmented landscape-vegetation-soil zones, and distance-constrained zonal analysis. We find that the global land vegetation can sequester an extra of 13.74 PgC per year if location-specific optimal land management practices are taken and half of the extra clusters in ~15% of vegetated areas. The finding suggests optimizing land management is a promising way to mitigate climate changes.
Funder
National Natural Science Foundation of China
Guangdong Innovative and Entrepreneurial Research Team Program
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
107 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献