A Comparative Analysis of Hybrid Deep Learning Models for Human Activity Recognition

Author:

Abbaspour SaedehORCID,Fotouhi Faranak,Sedaghatbaf Ali,Fotouhi HosseinORCID,Vahabi MaryamORCID,Linden MariaORCID

Abstract

Recent advances in artificial intelligence and machine learning (ML) led to effective methods and tools for analyzing the human behavior. Human Activity Recognition (HAR) is one of the fields that has seen an explosive research interest among the ML community due to its wide range of applications. HAR is one of the most helpful technology tools to support the elderly’s daily life and to help people suffering from cognitive disorders, Parkinson’s disease, dementia, etc. It is also very useful in areas such as transportation, robotics and sports. Deep learning (DL) is a branch of ML based on complex Artificial Neural Networks (ANNs) that has demonstrated a high level of accuracy and performance in HAR. Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) are two types of DL models widely used in the recent years to address the HAR problem. The purpose of this paper is to investigate the effectiveness of their integration in recognizing daily activities, e.g., walking. We analyze four hybrid models that integrate CNNs with four powerful RNNs, i.e., LSTMs, BiLSTMs, GRUs and BiGRUs. The outcomes of our experiments on the PAMAP2 dataset indicate that our proposed hybrid models achieve an outstanding level of performance with respect to several indicative measures, e.g., F-score, accuracy, sensitivity, and specificity.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3