A hybrid deep approach to recognizing student activity and monitoring health physique based on accelerometer data from smartphones

Author:

Xiao Lei,Luo Kangrong,Liu Juntong,Foroughi Andia

Abstract

AbstractSmartphone sensors have gained considerable traction in Human Activity Recognition (HAR), drawing attention for their diverse applications. Accelerometer data monitoring holds promise in understanding students’ physical activities, fostering healthier lifestyles. This technology tracks exercise routines, sedentary behavior, and overall fitness levels, potentially encouraging better habits, preempting health issues, and bolstering students’ well-being. Traditionally, HAR involved analyzing signals linked to physical activities using handcrafted features. However, recent years have witnessed the integration of deep learning into HAR tasks, leveraging digital physiological signals from smartwatches and learning features automatically from raw sensory data. The Long Short-Term Memory (LSTM) network stands out as a potent algorithm for analyzing physiological signals, promising improved accuracy and scalability in automated signal analysis. In this article, we propose a feature analysis framework for recognizing student activity and monitoring health based on smartphone accelerometer data through an edge computing platform. Our objective is to boost HAR performance by accounting for the dynamic nature of human behavior. Nonetheless, the current LSTM network’s presetting of hidden units and initial learning rate relies on prior knowledge, potentially leading to suboptimal states. To counter this, we employ Bidirectional LSTM (BiLSTM), enhancing sequence processing models. Furthermore, Bayesian optimization aids in fine-tuning the BiLSTM model architecture. Through fivefold cross-validation on training and testing datasets, our model showcases a classification accuracy of 97.5% on the tested dataset. Moreover, edge computing offers real-time processing, reduced latency, enhanced privacy, bandwidth efficiency, offline capabilities, energy efficiency, personalization, and scalability. Extensive experimental results validate that our proposed approach surpasses state-of-the-art methodologies in recognizing human activities and monitoring health based on smartphone accelerometer data.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3