Control of a Rehabilitation Robotic Device Driven by Antagonistic Soft Actuators

Author:

Chi Haozhen,Su Hairong,Liang WenyuORCID,Ren QinyuanORCID

Abstract

Stroke is becoming a widely concerned social problem, and robot-assisted devices have made considerable contributions in the training and treatment of rehabilitation. Due to the compliance and continuous deformation capacity, rehabilitation devices driven by soft actuators are attached to widespread attention. Considering the large output force of pneumatic artificial muscle (PAM) and the biological musculoskeletal structure, an antagonistic PAM-driven rehabilitation robotic device is developed. To fulfill the need for control of the proposed device, a knowledge-guided data-driven modeling approach is used and an adaptive feedforward–feedback control approach is presented to ensure the motion accuracy under large deformation motion with high frequency. Finally, several simulations and experiments are carried out to evaluate the performance of the developed system, and the results show that the developed system with the proposed controller can achieve expected control performance under various operations.

Funder

Fundamental Research Funds for the Central Universities

Supported by the Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang University, China

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3