The Effect of Blue Noise on the Optimization Ability of Hopfield Neural Network

Author:

Zhang Yu1,Chen Bin1,Li Lan1,Xu Yaoqun1ORCID,Wei Sifan1,Wang Yu1

Affiliation:

1. School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China

Abstract

Noise is ubiquitous in the real-world environment. At present, most scholars only include the stage of Gaussian white noise when applying noise in neural networks and regard white noise as a tool to optimize the network model, which is far from enough, because noise not only affects the optimization ability of the Hopfield neural network but can also better fit the needs of the actual use of the scene. Therefore, according to the problems in the existing research, a method is proposed to combine the neural network with colored noise according to the signal-to-noise ratio. Taking blue noise as an example, the anti-interference ability of the Hopfield neural network regarding colored noise is studied. The results show that for the Hopfield neural network driven by blue noise, by adjusting the neural network step size, excitation function and signal-to-noise ratio, it not only provides ideas for adding colored noise to the neural network but also enables the neural network model to have better optimization-seeking ability. The research results have some reference significance for improving the practical application of neural networks in noisy environments.

Funder

Nature Science Foundation of Heilongjiang Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3