Single Neuronal Dynamical System in Self-Feedbacked Hopfield Networks and Its Application in Image Encryption

Author:

Xu Xitong,Chen Shengbo

Abstract

Image encryption is a confidential strategy to keep the information in digital images from being leaked. Due to excellent chaotic dynamic behavior, self-feedbacked Hopfield networks have been used to design image ciphers. However, Self-feedbacked Hopfield networks have complex structures, large computational amount and fixed parameters; these properties limit the application of them. In this paper, a single neuronal dynamical system in self-feedbacked Hopfield network is unveiled. The discrete form of single neuronal dynamical system is derived from a self-feedbacked Hopfield network. Chaotic performance evaluation indicates that the system has good complexity, high sensitivity, and a large chaotic parameter range. The system is also incorporated into a framework to improve its chaotic performance. The result shows the system is well adapted to this type of framework, which means that there is a lot of room for improvement in the system. To investigate its applications in image encryption, an image encryption scheme is then designed. Simulation results and security analysis indicate that the proposed scheme is highly resistant to various attacks and competitive with some exiting schemes.

Funder

Jilin province and Jilin university co-building project

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3