Multi-Traveler Salesman Problem for Unmanned Vehicles: Optimization through Improved Hopfield Neural Network

Author:

Liu Song12,Gao Xinhua2,Chen Liu3,Zhou Sihui2,Peng Yong2,Yu Dennis Z.4ORCID,Ma Xianting12,Wang Yan5

Affiliation:

1. Institute for Intelligent Optimization of Comprehensive Transportation Systems, Chongqing Jiaotong University, Chongqing 400074, China

2. School of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China

3. Chongqing Survey Institute, Chongqing 401121, China

4. The David D. Reh School of Business, Clarkson University, Potsdam, NY 13699, USA

5. T.Y.LIN International Group Chongqing, Chongqing 401121, China

Abstract

In response to the COVID-19 pandemic, communities utilize unmanned vehicles to minimize person-to-person contact and lower the risk of infection. This paper addresses the critical considerations of these unmanned vehicles’ maximum load capacity and service time, formulating them as constraints within a multi-traveling salesman problem (MTSP). We propose a comprehensive optimization approach that combines a genetic simulated annealing algorithm with clustering techniques and an improved Hopfield neural network (IHNN). First, the MTSP is decomposed into multiple independent TSPs using the fuzzy C-means clustering algorithm based on a genetic simulated annealing algorithm (SA-GA-FCM). Subsequently, the HNN is employed to introduce the data transformation technique and dynamic step factor to prepare more suitable inputs for the HNN training process to avoid the energy function from falling into local solutions, and the simulated annealing algorithm is introduced to solve multiple TSP separately. Finally, the effectiveness of the proposed algorithm is verified by small-scale and large-scale instances, and the results clearly demonstrate that each unmanned vehicle can meet the specified constraints and successfully complete all delivery tasks. Furthermore, to gauge the performance of our algorithm, we conducted ten simulation comparisons with other combinatorial optimization and heuristic algorithms. These comparisons indicate that IHNN outperforms the algorithms mentioned above regarding solution quality and efficiency and exhibits robustness against falling into local solutions. As presented in this paper, the solution to the unmanned vehicle traveling salesman problem facilitates contactless material distribution, reducing time and resource wastage while enhancing the efficiency of unmanned vehicle operations, which has profound implications for promoting low-carbon sustainable development, optimizing logistics efficiency, and mitigating the risk of pandemic spread.

Funder

Chongqing Doctoral through the Train Project

Science Foundation of Chongqing Jiaotong University

Research and Innovation Program for Graduate Students in Chongqing

Team Building Project for Graduate Tutors in Chongqing

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3