Consideration of Carbon Emissions in Multi-Trip Delivery Optimization of Unmanned Vehicles

Author:

Gao Xinhua1,Liu Song12,Wang Yan3,Yu Dennis Z.4ORCID,Peng Yong1,Ma Xianting1

Affiliation:

1. School of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China

2. Institute for Intelligent Optimization of Comprehensive Transportation Systems, Chongqing Jiaotong University, Chongqing 400074, China

3. T.Y.LIN International Group Chongqing, Chongqing 401121, China

4. The David D. Reh School of Business, Clarkson University, Potsdam, NY 13699, USA

Abstract

In order to achieve the goal of low-carbon, efficient delivery using unmanned vehicles, a multi-objective optimization model considering carbon emissions in the problem of optimizing multi-route delivery for unmanned vehicles is proposed. An improved genetic algorithm (IGA) is designed for solving this problem. This study takes into account constraints such as the maximum service duration for delivery, the number of vehicles, and the approved loading capacity of the vehicles, with the objective of minimizing the startup cost, transportation cost, fuel cost, and environmental cost in terms of the carbon dioxide emissions of unmanned vehicles. A combination encoding method based on the integer of the number of trips, the number of vehicles, and the number of customers is used. The inclusion of a simulated annealing algorithm and an elite selection strategy in the design of the IGA enhances the quality and efficiency of the algorithm. The international dataset Solomon RC 208 is used to verify the effectiveness of the model and the algorithm in small-, medium-, and large-scale cases by comparing them with the genetic algorithm (GA) and simulated annealing algorithm (SA). The research results show that the proposed model is applicable to the problem of optimizing the multi-route delivery of unmanned vehicles while considering carbon emissions. Compared with the GA and SA, the IGA demonstrates faster convergence speed and higher optimization efficiency. Additionally, as the problem’s scale increases, the average total cost deviation rate changes significantly, and better delivery solutions for unmanned vehicles are obtained with the IGA. Furthermore, the selection of delivery routes for unmanned vehicles primarily depends on their startup costs and transportation distance, and the choice of different vehicle types has an impact on delivery duration, total distance, and the average number of trips. The delivery strategy that considers carbon emissions shows a 22.6% difference in its total cost compared to the strategy that does not consider carbon emissions. The model and algorithms proposed in this study provide optimization solutions for achieving low-carbon and efficient delivery using unmanned vehicles, aiming to reduce their environmental impact and costs. They also contribute to the development and application of unmanned vehicle technology in the delivery field.

Funder

Song Liu

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3