Novel Approaches in Tropical Forests Mapping and Monitoring–Time for Operationalization

Author:

Portillo-Quintero Carlos,Hernández-Stefanoni Jose L.ORCID,Reyes-Palomeque GabrielaORCID,Subedi Mukti R.ORCID

Abstract

  For more than three decades, the remote sensing scientific community has successfully generated predictive models of tropical forest attributes and ecological processes at the leaf, canopy, patch and landscape scale by linking field-measured data to remotely sensed spectral values, as well as other variables derived from remotely sensed data. The main interest of these applications is to help describe ecological and functional patterns occurring at larger geographic scales with sufficient accuracy and precision and enable scientists to better understand ecological processes, such as the relationship between atmospheric fluxes, plant structural and ecophysiological traits, soil attributes, anthropogenic use, species occurrence and animal movement. However, as the earth’s environment suffers from ever-increasing human use and abuse, detecting spatiotemporal changes in these variables has become a necessary decision-making tool in conservation action and natural resources’ management. Moving from modeling into the study of soil, plants, wildlife and socioecological processes using remotely sensed data requires the extrapolation of single time-step models to its application on a time series of data with the same expected accuracy. The challenges in this matter are not trivial, since changes in soil moisture conditions, cloud contamination, canopy and leaf-level geometry and physiology can affect the strength of the proposed models. In this context, the term ‘Operationalization’ refers to migration from single time-step models to time series but also refers to the design and implementation of user-friendly tools to increase the efficacy of communicating spatiotemporal trends to the users. [...]

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3