Carbon Stocks, Species Diversity and Their Spatial Relationships in the Yucatán Peninsula, Mexico

Author:

Hernández-Stefanoni José LuisORCID,Castillo-Santiago Miguel Ángel,Andres-Mauricio JuanORCID,Portillo-Quintero Carlos A.,Tun-Dzul Fernando,Dupuy Juan ManuelORCID

Abstract

Integrating information about the spatial distribution of carbon stocks and species diversity in tropical forests over large areas is fundamental for climate change mitigation and biodiversity conservation. In this study, spatial models showing the distribution of carbon stocks and the number of species were produced in order to identify areas that maximize carbon storage and biodiversity in the tropical forests of the Yucatan Peninsula, Mexico. We mapped carbon density and species richness of trees using L-band radar backscatter data as well as radar texture metrics, climatic and field data with the random forest regression algorithm. We reduced sources of errors in plot data of the national forest inventory by using correction factors to account for carbon stocks of small trees (<7.5 cm DBH) and for the temporal difference between field data collection and imagery acquisition. We created bivariate maps to assess the spatial relationship between carbon stocks and diversity. Model validation of the regional maps obtained herein using an independent data set of plots resulted in a coefficient of determination (R2) of 0.28 and 0.31 and a relative mean square error of 38.5% and 33.0% for aboveground biomass and species richness, respectively, at pixel level. Estimates of carbon density were influenced mostly by radar backscatter and climatic data, while those of species richness were influenced mostly by radar texture and climatic variables. Correlation between carbon density and species richness was positive in 79.3% of the peninsula, while bivariate maps showed that 39.6% of the area in the peninsula had high carbon stocks and species richness. Our results highlight the importance of combining carbon and diversity maps to identify areas that are critical—both for maintaining carbon stocks and for conserving biodiversity.

Funder

Ecometrica LTD

United Kingdom Space Agency

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3