A Low-Cost and Robust Landsat-Based Approach to Study Forest Degradation and Carbon Emissions from Selective Logging in the Venezuelan Amazon

Author:

Pacheco-Angulo CarlosORCID,Plata-Rocha WenseslaoORCID,Serrano Julio,Vilanova EmilioORCID,Monjardin-Armenta SergioORCID,González Alvaro,Camargo CristopherORCID

Abstract

Selective logging in the tropics is a major driver of forest degradation by altering forest structure and function, including significant losses of aboveground carbon. In this study, we used a 30-year Landsat time series (1985–2015) to analyze forest degradation and carbon emissions due to selective logging in a Forest Reserve of the Venezuelan Amazon. Our work was conducted in two phases: the first, by means of a direct method we detected the infrastructure related to logging at the sub-pixel level, and for the second, we used an indirect approach using buffer areas applied to the results of the selective logging mapping. Pre- and post-logging forest inventory data, combined with the mapping analysis were used to quantify the effects of logging on aboveground carbon emissions for three different sources: hauling, skidding and tree felling. With an overall precision of 0.943, we demonstrate the potential of this method to efficiently map selective logging and forest degradation with commission and omission errors of +7.6 ± 4.5 (Mean ± SD %) and −7.5% ± 9.1 respectively. Forest degradation due to logging directly affected close to 24,480 ha, or about ~1% of the total area of the Imataca Forest Reserve. On average, with a relatively low harvest intensity of 2.8 ± 1.2 trees ha−1 or 10.5 ± 4.6 m3 ha−1, selective logging was responsible for the emission of 61 ± 21.9 Mg C ha−1. Lack of reduced impact logging guidelines contributed to pervasive effects reflected in a mean reduction of ~35% of the aboveground carbon compared to unlogged stands. This research contributes to further improve our understanding of the relationships between selective logging and forest degradation in tropical managed forests and serves as input for the potential implementation of projects for reducing emissions from deforestation and forest degradation (REDD+).

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3