Modeling and Integrated Optimization of Power Split and Exhaust Thermal Management on Diesel Hybrid Electric Vehicles

Author:

Zhao Jinghua,Hu Yunfeng,Xie Fangxi,Li Xiaoping,Sun Yao,Sun Hongyu,Gong Xun

Abstract

To simultaneously achieve high fuel efficiency and low emissions in a diesel hybrid electric vehicle (DHEV), it is necessary to optimize not only power split but also exhaust thermal management for emission aftertreatment systems. However, how to coordinate the power split and the exhaust thermal management to balance fuel economy improvement and emissions reduction remains a formidable challenge. In this paper, a hierarchical model predictive control (MPC) framework is proposed to coordinate the power split and the exhaust thermal management. The method consists of two parts: a fuel and thermal optimized controller (FTOC) combining the rule-based and the optimization-based methods for power split simultaneously considering fuel consumption and exhaust temperature, and a fuel post-injection thermal controller (FPTC) for exhaust thermal management with a separate fuel injection system added to the exhaust pipe. Additionally, preview information about the road grade is introduced to improve the power split by a fuel and thermal on slope forecast optimized controller (FTSFOC). Simulation results show that the hierarchical method (FTOC + FPTC) can reach the optimal exhaust temperature nearly 40 s earlier, and its total fuel consumption is also reduced by 8.9%, as compared to the sequential method under a world light test cycle (WLTC) driving cycle. Moreover, the total fuel consumption of the FTSFOC is reduced by 5.2%, as compared to the fuel and thermal on sensor-information optimized controller (FTSOC) working with real-time road grade information.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3