Initialisation of Optimisation Solvers for Nonlinear Model Predictive Control: Classical vs. Hybrid Methods

Author:

Ławryńczuk MaciejORCID,Marusak Piotr M.ORCID,Chaber PatrykORCID,Seredyński DawidORCID

Abstract

In nonlinear Model Predictive Control (MPC) algorithms, the number of cost-function evaluations and the resulting calculation time depend on the initial solution to the nonlinear optimisation task. Since calculations must be performed fast on-line, the objective is to minimise these indicators. This work discusses twelve initialisation strategies for nonlinear MPC. In general, three categories of strategies are discussed: (a) five simple strategies, including constant and random guesses as well as the one based on the previous optimal solution, (b) three strategies that utilise a neural approximator and an inverse nonlinear static model of the process and (c) four hybrid original methods developed by the authors in which an auxiliary quadratic optimisation task is solved or an explicit MPC controller is used; in both approaches, linear or successively linearised on-line models can be used. Efficiency of all methods is thoroughly discussed for a neutralisation reactor benchmark process and some of them are evaluated for a robot manipulator, which is a multivariable process. Two strategies are found to be the fastest and most robust to model imperfections and disturbances acting on the process: the hybrid strategy with an auxiliary explicit MPC controller based on a successively linearised model and the method which uses the optimal solution obtained at the previous sampling instant. Concerning the hybrid strategies, since a simplified model is used in the auxiliary controller, they perform much better than the approximation-based ones with complex neural networks. It is because the auxiliary controller has a negative feedback mechanism that allows it to compensate model errors and disturbances efficiently. Thus, when the auxiliary MPC controller based on a successively linearised model is available, it may be successfully and efficiently used for the initialisation of nonlinear MPC, whereas quite sophisticated methods based on a neural approximator are very disappointing.

Funder

Warsaw University of Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference60 articles.

1. Model Predictive Control;Camacho,1999

2. Predictive Control with Constraints;Maciejowski,2002

3. Advanced Control of Industrial Processes, Structures and Algorithms;Tatjewski,2007

4. Efficient MPC algorithms with variable trajectories of parameters weighting predicted control errors;Nebeluk;Arch. Control Sci.,2020

5. Nonlinear parametric predictive temperature control of a distillation column

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3