Abstract
A new procedure, based on measurement of intake CO2 concentration and ambient humidity was developed and assessed in this study for different diesel engines in order to evaluate the oxygen concentration in the intake manifold. Steady-state and transient datasets were used for this purpose. The method is very fast to implement since it does not require any tuning procedure and it involves just one engine-related input quantity. Moreover, its accuracy is very high since it was found that the absolute error between the measured and predicted intake O2 levels is in the ±0.15% range. The method was applied to verify the performance of a previously developed NOx model under transient operating conditions. This model had previously been adopted by the authors during the IMPERIUM H2020 EU project to set up a model-based controller for a heavy-duty diesel engine. The performance of the NOx model was evaluated considering two cases in which the intake O2 concentration is either derived from engine-control unit sub-models or from the newly developed method. It was found that a significant improvement in NOx model accuracy is obtained in the latter case, and this allowed the previously developed NOx model to be further validated under transient operating conditions.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献