High-Frequency Observations of Cyanobacterial Blooms in Lake Taihu (China) from FY-4B/AGRI

Author:

Hang Xin1,Li Xinyi2,Li Yachun1,Zhu Shihua1,Li Shengqi3,Han Xiuzhen4,Sun Liangxiao1

Affiliation:

1. Jiangsu Climate Center, Jiangsu Meteorological Bureau, Nanjing 210008, China

2. Nanjing Joint Institute for Atmospheric Sciences, Nanjing 210009, China

3. School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China

4. National Satellite Meteorological Center, Beijing 100081, China

Abstract

China’s FY-4B satellite, launched on 3 June 2021, is a new-generation geostationary meteorological satellite. The Advanced Geosynchronous Radiation Imager (AGRI) onboard FY-4B has 15 spectral channels, including 2 visible (470 and 650 nm), 1 near infrared (825 nm), and 3 shortwave infrared (1379, 1610, and 2225 nm) bands, which can be used to observe the Earth system with the highest spatial resolution of 500 m and 15 min temporal resolution. In this study, FY-4B/AGRI observations were applied for the first time to monitor cyanobacterial blooms in Lake Taihu, China. The AGRI reflectance at visible and near-infrared bands was first corrected to surface reflectance using the 6S radiative transfer model. Due to the similar spectral reflectance characteristics to those of land-based vegetation, the normalized difference vegetation index (NDVI) and some other remote sensing vegetation indices are usually used for the retrieval of cyanobacterial blooms. The fractional vegetation cover (FVC) of algae, defined as the fraction of green vegetation in the nadir view, was adopted to depict the status and trend of cyanobacterial blooms. NDVI and FVC, the two remote sensing indices developed for the retrieval of land vegetation, were used for the detection of cyanobacteria blooms in Lake Taihu. Finally, the FVC derived from AGRI measurements was compared with that obtained from the Advanced Himawari Imager (AHI) onboard the Himawari-8 satellite to validate the effectiveness of our method. It was found that atmospheric correction can substantially improve the determination of the normalized difference vegetation index (NDVI) values of cyanobacterial blooms in the lake. As a proof of the robustness of the algorithm, the NDVIs are both derived from both AGRI and AHI and their magnitudes are similar. In addition, the distribution of cyanobacterial blooms derived from AGRI FVC is highly consistent with that derived from FY-3D/MERSI and EOS/MODIS. While a lower spatial resolution of FY-4B/AGRI might restrict its capability in capturing some spatial details of cyanobacterial blooms, the high-frequency measurements can provide information for the timely and effective management of aquatic ecosystems and help researchers better quantify and understand the dynamics of cyanobacterial blooms. In particular, AGRI can provide greater details on the diurnal variation in the distribution of cyanobacterial blooms owing to the high temporal resolution.

Funder

Fengyun Application Pioneering Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3