Abstract
AbstractCyanobacterial blooms are a global ecological problem that directly threatens human health and crop safety. Cyanobacteria have toxic effects on aquatic microorganisms, which could drive the selection for resistance genes. The effect of cyanobacterial blooms on the dispersal and abundance of antibiotic-resistance genes (ARGs) of concern to human health remains poorly known. We herein investigated the effect of cyanobacterial blooms on ARG composition in Lake Taihu, China. The numbers and relative abundances of total ARGs increased obviously during a Planktothrix bloom. More pathogenic microorganisms were present during this bloom than during a Planktothrix bloom or during the non-bloom period. Microcosmic experiments using additional aquatic ecosystems (an urban river and Lake West) found that a coculture of Microcystis aeruginosa and Planktothrix agardhii increased the richness of the bacterial community, because its phycosphere provided a richer microniche for bacterial colonization and growth. Antibiotic-resistance bacteria were naturally in a rich position, successfully increasing the momentum for the emergence and spread of ARGs. These results demonstrate that cyanobacterial blooms are a crucial driver of ARG diffusion and enrichment in freshwater, thus providing a reference for the ecology and evolution of ARGs and ARBs and for better assessing and managing water quality.
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Reference62 articles.
1. Paerl, H. W. & Huisman, J. Blooms like it hot. Science 320, 57–58 (2008).
2. Ma, J. & Li, H. Preliminary discussion on eutrophication status of lakes, reservoirs and reivers in China and overseas. Resour. Environ. Yangtze Val. 11, 575–578 (2002).
3. Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483 (2018).
4. Paerl, H. W. Transfer of N2 and CO2 fixation products from Anabaena oscillarioides to associated bacteria during inorganic carbon sufficiency and deficiency. J. Phycol. 20, 600–608 (1984).
5. Danillo, O. A., Marli, F. F. & Alessandro, M. V. A metagenomic approach to cyanobacterial genomics. Front. Microbiol. 8, 809–824 (2017).
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献