Brain Activity Recognition Method Based on Attention-Based RNN Mode

Author:

Zhou Song,Gao Tianhan

Abstract

Brain activity recognition based on electroencephalography (EEG) marks a major research orientation in intelligent medicine, especially in human intention prediction, human–computer control and neurological diagnosis. The literature research mainly focuses on the recognition of single-person binary brain activity, which is limited in the more extensive and complex scenarios. Therefore, brain activity recognition in multiperson and multi-objective scenarios has aroused increasingly more attention. Another challenge is the reduction of recognition accuracy caused by the interface of external noise as well as EEG’s low signal-to-noise ratio. In addition, traditional EEG feature analysis proves to be time-intensive and it relies heavily on mature experience. The paper proposes a novel EEG recognition method to address the above issues. The basic feature of EEG is first analyzed according to the band of EEG. The attention-based RNN model is then adopted to eliminate the interference to achieve the purpose of automatic recognition of the original EEG signal. Finally, we evaluate the proposed method with public and local data sets of EEG and perform lots of tests to investigate how factors affect the results of recognition. As shown by the test results, compared with some typical EEG recognition methods, the proposed method owns better recognition accuracy and suitability in multi-objective task scenarios.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A SE-DenseNet-LSTM model for locomotion mode recognition in lower limb exoskeleton;PeerJ Computer Science;2024-02-29

2. Novel Human Activity Recognition and Recommendation Models for Maintaining Good Health of Mobile Users;WSEAS TRANSACTIONS ON INFORMATION SCIENCE AND APPLICATIONS;2024-01-23

3. A Novel Human Activity Recognition Model;2023 8th International Conference on Mathematics and Computers in Sciences and Industry (MCSI);2023-10-14

4. BiLSTM- and GNN-Based Spatiotemporal Traffic Flow Forecasting with Correlated Weather Data;Journal of Advanced Transportation;2023-10-11

5. Predict Students’ Attention in Online Learning Using EEG Data;Sustainability;2022-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3