Predict Students’ Attention in Online Learning Using EEG Data

Author:

Al-Nafjan Abeer,Aldayel MashaelORCID

Abstract

In education, it is critical to monitor students’ attention and measure the extents to which students participate and the differences in their levels and abilities. The overall goal of this study was to increase the quality of distance education. In particular, in order to craft an approach that will effectively augment online learning using objective measures of brain activity, we propose a brain–computer interface (BCI) system that aims to use electroencephalography (EEG) signals for the detection of student’s attention during online classes. This system will aid teachers to objectively assess student attention and engagement. To this end, experiments were conducted on a public dataset; we extracted power spectral density (PSD) features using used a fast Fourier transform. Different attention indexes were calculated. Then, we built three different classification algorithms: k-nearest neighbors (KNN), support vector machine (SVM), and random forest (RF). Our proposed random forest classifier achieved a higher accuracy (96%) than KNN and SVM. Moreover, our results compared to state-of-the-art attention-detection systems with respect to the same dataset. Our findings revealed that the proposed RF approach can be used to effectively distinguish the attention state of a user.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3