Affiliation:
1. Hubei Key Laboratory for High-efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology, Wuhan, China
2. Hubei Engineering Research Centre for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan, China
Abstract
Locomotion mode recognition in humans is fundamental for flexible control in wearable-powered exoskeleton robots. This article proposes a hybrid model that combines a dense convolutional network (DenseNet) and long short-term memory (LSTM) with a channel attention mechanism (SENet) for locomotion mode recognition. DenseNet can automatically extract deep-level features from data, while LSTM effectively captures long-dependent information in time series. To evaluate the validity of the hybrid model, inertial measurement units (IMUs) and pressure sensors were used to obtain motion data from 15 subjects. Five locomotion modes were tested for the hybrid model, such as level ground walking, stair ascending, stair descending, ramp ascending, and ramp descending. Furthermore, the data features of the ramp were inconspicuous, leading to large recognition errors. To address this challenge, the SENet module was incorporated, which improved recognition rates to some extent. The proposed model automatically extracted the features and achieved an average recognition rate of 97.93%. Compared with known algorithms, the proposed model has substantial recognition results and robustness. This work holds promising potential for applications such as limb support and weight bearing.
Funder
Natural Science Foundation of Hubei Province
Hubei University of Technology Ph.D. Research Startup Fund Project