Abstract
A reliable and accurate monitoring of traffic load is of significance for the operational management and safety assessment of bridges. Traditional weight-in-motion techniques are capable of identifying moving vehicles with satisfactory accuracy and stability, whereas the cost and construction induced issues are inevitable. A recently proposed traffic sensing methodology, combining computer vision techniques and traditional strain based instrumentation, achieves obvious overall improvement for simple traffic scenarios with less passing vehicles, but are enfaced with obstacles in complicated traffic scenarios. Therefore, a traffic monitoring methodology is proposed in this paper with extra focus on complicated traffic scenarios. Rather than a single sensor, a network of strain sensors of a pre-installed bridge structural health monitoring system is used to collect redundant information and hence improve accuracy of identification results. Field tests were performed on a concrete box-girder bridge to investigate the reliability and accuracy of the method in practice. Key parameters such as vehicle weight, velocity, quantity, type and trajectory are effectively identified according to the test results, in spite of the presence of one-by-one and side-by-side vehicles. The proposed methodology is infrastructure safety oriented and preferable for traffic load monitoring of short and medium span bridges with respect to accuracy and cost-effectiveness.
Funder
National Natural Science Foundation of China
Science and Technology Commission of Shanghai Municipality
Subject
General Earth and Planetary Sciences
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献