A hierarchical Bayesian model updating method for bridge structures by fusing multi-source information

Author:

Luo Lanxin12ORCID,Song Mingming13,Li Yixian2,Sun Limin134ORCID

Affiliation:

1. Department of Bridge Engineering, Tongji University, Shanghai, China

2. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China

3. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai, China

4. Shanghai Qizhi Institute, Shanghai, China

Abstract

The expanding structural health monitoring (SHM) systems on bridge structures have provided an abundance of multi-source data for finite element model updating (FEMU). The SHM systems on bridges usually include surveillance cameras, vibration sensors (e.g., accelerometers, strain gauges, and displacement sensors), and sometimes a weight-in-motion (WIM) system. Currently, the majority of FEMU studies focus on identified modal parameters derived from vibration data, neglecting the incorporation of video and WIM data in the updating process, which impedes a thorough quantification of uncertainty associated with the structural parameters of interest. Therefore, this paper proposes a hierarchical Bayesian FEMU framework to comprehensively integrate a variety of information sources, including videos, WIM, and vibration data. The data features comprise the static deflections of the bridge under traffic load and modal parameters identified from acceleration measurements. The measured static deflections are extracted from raw displacement data using the locally weighted regression and smoothing scatterplots method. Computer vision-based technology is employed to pinpoint the location of vehicle load on the bridge, which is then integrated into a FEM to predict vehicle-load-induced static deflection. A two-stage Markov Chain Monte Carlo sampling approach is proposed to evaluate the high-dimensional posterior distribution efficiently. The effectiveness of the proposed method is demonstrated on a laboratory three-span bridge model. The results show that the hierarchical Bayesian FEMU can provide accurate estimation and uncertainty quantification on structural stiffness and mass parameters. The updated model accurately predicts both static deflection and modal parameters, exhibiting model-predicted variability in close alignment with the identified values for observed and unobserved responses. Remarkably, this holds true even for unseen loading conditions which are not included in the updating process. These observations validate the capability of the proposed method for multi-source data fusion and uncertainty quantification of real-world bridge structures under operational conditions.

Funder

the Technology Cooperation Project of Shanghai Qizhi Institute

National Natural Science Foundation of China

the Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3