Identification of bridge influence line and multiple-vehicle loads based on physics-informed neural networks

Author:

Li Xingtian12,Zhu Jinsong13ORCID

Affiliation:

1. State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin, PR China

2. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou, PR China

3. Key Laboratory of Coast Civil Structure Safety of Ministry of Education, Tianjin University, Tianjin, PR China

Abstract

Influence lines (ILs) and vehicle loads identification are critical in the design, health monitoring, and damage detection of bridges. Traditionally, the approach used in most existing literature has been to solve the system of equations directly. However, these approaches require complex calculations such as matrix decomposition and regularization coefficient optimization, making them difficult to implement. In addition, there are difficulties in obtaining accurate axle information and effectively separating the bridge response due to each vehicle. Thus, the improvement of identification algorithms for ILs and multi-vehicle loads remains of significant importance. To address these issues, this paper presents a novel approach that integrates prior physical equations and neural networks. This is achieved by integrating the equation that reflects the relationship between axle loads and bridge response into the neural network, utilizing existing methods for acquiring axle information of vehicles. To validate the effectiveness of the proposed method, it was first applied to theoretical and simulation data. The study then investigated the impact of noise and dynamic effects on the accuracy of the results, as well as the range of the neural network layers and sampling intervals. Finally, the method was implemented for identifying multiple-vehicle loads. The findings of the study confirm the feasibility and numerical stability of the proposed approach. The proposed method eliminates the need for complex computational processes, including matrix decomposition, diagonalization, regularization coefficient optimization, and solution vector smoothing fitting. As a result, the implementation of the algorithm is significantly less challenging, and identification accuracy is improved. It is important to note, however, that the proposed method is relatively more time-consuming due to the iterative learning and training required by the neural network.

Funder

Tianjin Transportation Science and Technology Development Plan Project

Ministry of Science and Technology of the People’s Republic of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3