Deep Belief Network with Swarm Spider Optimization Method for Renewable Energy Power Forecasting

Author:

Wei Yuan1,Zhang Huanchang1,Dai Jiahui2ORCID,Zhu Ruili1,Qiu Lihong2,Dong Yuzhuo2,Fang Shuai1

Affiliation:

1. Northwest Electric Power Design Institute, Xi’an 710075, China

2. Department of Electrical Engineering, Xi’an University of Technology, Xi’an 710048, China

Abstract

Renewable energy power prediction plays a crucial role in the development of renewable energy generation, and it also faces a challenging issue because of the uncertainty and complex fluctuation caused by environmental and climatic factors. In recent years, deep learning has been increasingly applied in the time series prediction of new energy, where Deep Belief Networks (DBN) can perform outstandingly for learning of nonlinear features. In this paper, we employed the DBN as the prediction model to forecast wind power and PV power. A novel metaheuristic optimization algorithm, called swarm spider optimization (SSO), was utilized to optimize the parameters of the DBN so as to improve its performance. The SSO is a novel swarm spider behavior based optimization algorithm, and it can be employed for addressing complex optimization and engineering problems. Considering that the prediction performance of the DBN is affected by the number of the nodes in the hidden layer, the SSO is used to optimize this parameter during the training stage of DBN (called SSO-DBN), which can significantly enhance the DBN prediction performance. Two datasets, including wind power and PV power with their influencing factors, were used to evaluate the forecasting performance of the proposed SSO-DBN. We also compared the proposed model with several well-known methods, and the experiment results demonstrate that the proposed prediction model has better stability and higher prediction accuracy in comparison to other methods.

Funder

China Power Engineering Consulting Group Project

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3