Mitotic Nuclei Segmentation and Classification Using Chaotic Butterfly Optimization Algorithm with Deep Learning on Histopathology Images

Author:

AlGhamdi Rayed1ORCID

Affiliation:

1. Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

Histopathological grading of the tumors provides insights about the patient’s disease conditions, and it also helps in customizing the treatment plans. Mitotic nuclei classification involves the categorization and identification of nuclei in histopathological images based on whether they are undergoing the cell division (mitosis) process or not. This is an essential procedure in several research and medical contexts, especially in diagnosis and prognosis of cancer. Mitotic nuclei classification is a challenging task since the size of the nuclei is too small to observe, while the mitotic figures possess a different appearance as well. Automated calculation of mitotic nuclei is a stimulating one due to their great similarity to non-mitotic nuclei and their heteromorphic appearance. Both Computer Vision (CV) and Machine Learning (ML) approaches are used in the automated identification and the categorization of mitotic nuclei in histopathological images that endure the procedure of cell division (mitosis). With this background, the current research article introduces the mitotic nuclei segmentation and classification using the chaotic butterfly optimization algorithm with deep learning (MNSC-CBOADL) technique. The main objective of the MNSC-CBOADL technique is to perform automated segmentation and the classification of the mitotic nuclei. In the presented MNSC-CBOADL technique, the U-Net model is initially applied for the purpose of segmentation. Additionally, the MNSC-CBOADL technique applies the Xception model for feature vector generation. For the classification process, the MNSC-CBOADL technique employs the deep belief network (DBN) algorithm. In order to enhance the detection performance of the DBN approach, the CBOA is designed for the hyperparameter tuning model. The proposed MNSC-CBOADL system was validated through simulation using the benchmark database. The extensive results confirmed the superior performance of the proposed MNSC-CBOADL system in the classification of mitotic nuclei.

Funder

Ministry of Education and Deanship of Scientific Research (DSR), King Abdulaziz University (KAU), Jeddah, Saudi Arabia

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3